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Abstract—In sonar applications, important information such
as distributions of minerals, underwater creatures has high
probability to be contained in sonar images. In many underwater
applications such as underwater rescue and biometric tracking,
it is necessary to send sonar images underwater for further
analysis. Due to bad conditions of underwater acoustic channel
and current underwater acoustic communication technologies,
sonar images very possibly suffer from several typical types of
distortions. As far as we know, limited efforts have been made
to gather meaningful sonar image databases and benchmark
reliable objective quality model so far. This paper develops a
new objective sonar image quality predictor (SIQP), whose core
is the combination of two features specific to quality measure of
sonar images. These two features, which come from statistical
and structural information inspired by the characteristics of
sonar images and the human visual system (HVS), reflect image
quality from the global and detailed aspects. The performance
comparison of proposed metric with popular and prevailing
quality evaluation models is conducted using a newly established
sonar image quality database (SIQD). Results of experiments
show the superiority of our SIQP metric over the available quality
evaluation models.

Index Terms—Sonar image, quality evaluation, local entropy,
edge, underwater acoustic transmission, human visual system

I. INTRODUCTION

BECAUSE of the ability to take images in relatively
dim light underwater, sonar has been more and more

widely used during recent years. Sonar images very possibly
contain important information like submarine geomorphology,
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marine organism, wreck remains, and so on. In many (if not
all) applications, it is necessary to send images captured by
sonar to a remote location for further analysis. That is, sonar
images will be transmitted via an underwater acoustic channel
to users. One of the most complicated channels should be
the underwater acoustic channel. Bad channel condition and
current underwater acoustic communication technology only
provide with relatively limited bandwidth and unstable link
[1]. Sonar images are likely to suffer from different distortions
during transmission. Image quality assessment (IQA) plays
a pivotal role for monitoring by: (1) estimating the quality
degradation due to nonideal transmission; (2) optimization of
compression; (3) being the basis of retransmission; (4) being
a benchmark in the process of image post-processing.

Numerous IQA approaches have been proposed particularly
for camera-captured natural scene images (CC-NSIs). Based
on the accessibility of reference information, IQA methods can
be divided into three groups. If there is no reference signal
available, then the IQA method is the so called no-reference
(NR) method [2], [3], [4], [5]. If the reference information is
partially accessible, then it is termed as a reduced-reference
(RR) one [6], [7]. The third one is the full-reference (FR)
method as an antithesis of the NR method under the condition
of complete reference signals accessible, and thus the current
NR and RR methods cannot compete with FR methods [8].
When considering the optimization and restoration which are
the two most common applications of sonar IQA, the reference
signal is available and FR methods are more preferable. In
multimedia signal processing, authors proposed a series of FR
IQA methods based on the similarity measurements of features
extracted from the distorted image and its reference signal for
quality judgement [9], [10], [11], [12]. Another kind of FR
IQA model is based on the image fidelity which is defined
according to the characteristics of human visual system (HVS)
[13]. Other algorithms were devised using brain principle [14],
analysis of distortion distribution [15], and in [16], Lin et al.
have provided a thorough survey. The above-mentioned IQA
methods all perform well for CC-NSIs, but fail in quality
prediction of sonar images.

Since there are different types of sonar devices, existing
sonar image quality metrics are equipment-specific. Consider-
ing the application of synthetic aperture sonar (SAS) images,
its quality can be represented by the correlation of sonar ping-
returns by using measurements of sonar-platform motion and
estimates of environmental characteristics [17]. Besides, the
quality of SAS images can also be evaluated by the degree
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of navigation errors [18]. It can be seen that the above-
mentioned works all lose sight of the influence of HVS.
In [19], the quality of forward looking sonar images are
measured by mathematical features as image mean value,
entropy and the significance of echoes in a NR way. The
method proposed in [19] only determines whether the image is
sufficient for reliable obstacle recognition instead of providing
a relatively accurately quality score. Actually few effort has
been devoted to quality metrics of sonar images in accordance
to the characteristics of HVS, so it is necessary to devise
an effective FR sonar IQA method in consideration of both
HVS and applications. Images captured using distinct kinds of
sonars have different characteristics. Here acoustic lens sonar
and side-scan sonar are selected, since images captured by
them have reasonable resolution, precision and other parame-
ters, and similar utilities, e.g. underwater searching, rescuing,
seabed mapping, underwater biological detection, etc., which
require human decision because it is difficult to achieve
automatic image analysis according to the current state of the
art. Those selected sonar images feature different gray levels,
low contrast and less detail and the information extracted from
them is mainly for detecting or mapping, whereas the CC-NSIs
are mostly characterized by rich color variations, thick lines
and complex texture content which forms the pattern primarily
for entertainment [20], and these differences give rise to a big
challenge to the assessment of sonar image quality. To tackle
the problem, the characteristics of sonar images and HVS are
both taken into account.

From the viewpoint of sonar image characteristics, the
statistical characteristics of sonar images are considered due to
their ability to represent the global information. For instance,
skewness and kurtosis have been used to evaluate the quality of
contrast-changed images [6], and image entropy has been used
in [19] as one of the features for sonar IQA. In consideration
of physical significance of sonar imaging and transmission
system, the target of sonar can be modelled as a stochastic
source. The information entropy is defined as the expected
value of the information contained in a stochastic source,
and the entropy of received sonar image is often different
from source entropy. In this paper, the image entropy is
extracted as one important feature to represent sonar image
quality according to the fact that sonar images provide a visual
representation of something that cannot be perceived visually.
Aforementioned statistical features show the global informa-
tion without considering the interplay between adjacent pixels,
which may lead the loss of some information. In this paper, we
hold the opinion that the local entropy (a kind of expression
of statistical information) which shows the global information
and takes the influence of adjacent pixels into account might
be a better quality predictor of sonar images. Sonar images
are usually captured for detection and recognition in turbid
water, and can be viewed as a typical grey-scale image with
low contrast, less detail and centrally distributed information.
Based on the above characteristics, the structures contribute
more in the representation of sonar images than other image
components and the edge is one of the important representa-
tion of structure. Besides, the important information in sonar
images is relatively centralized, so the edge similarity before

and after transmission in the most active areas can represent
the changed quality via transmission. Since most CC-NSIs are
characterized by rich color variations, thick lines and complex
texture content, the significance of structure-relevant features
may be more limited when compared to sonar images. And
the edge map in the most active area is less typical for a CC-
NSI than for sonar images, since the content of CC-NSIs are
relatively more rich and complex.

From the HVS aspect, it is generally known that edge
is important for visual perception and plays a crucial part
in image content recognition. It has been demonstrated that
the image edge which the visual attention is sensitive to
can capture image structures [11]. As compared with color
images, the structures contribute more in IQA of grayscale
sonar images. Besides, image edge contains the majority of
the information about the target that viewers are interested
in, and it is one of the crucial features to identify the targets
contained in sonar images. Moreover, multiple strategies are
used by the HVS to infer image quality [21], [22]. When
the image has relative high quality, the global perspective is
frequently-used. However when a sonar image is afflicted with
severe degradations, there only remain part of the structures
that may encompass some useful information. So people tend
to pay attention to the remaining structural information when
image quality is poor. To incorporate the characteristics of
sonar images with the HVS properties, a strategy combining
both statistical and structural information is employed in this
paper for quality prediction of sonar images.

In this paper, a sonar image quality predictor (SIQP) is
proposed based on the similarities of local entropy map and
edge map from the perspectives of statistical and structural
information. Existing work has proved that entropy is an
effective feature in the IQA [23], [24], [25], [26], [27]. Entropy
represents the information included in an image from the
aspect of information theory. Since sonar images are usually
used for practical uses, high quality sonar images should
contain enough useful information. Thus the entropy can be
one of the indicators of sonar image quality. In this paper,
local entropy map considering the ‘uncrowded window’ effect
of object recognition [28] is extracted in our work. Then the
changes occurred in global information which is measured by
the similarity of local entropy maps between the distorted
and reference images are calculated. Though entropy is a
good quality index, it tends to represent the image quality
from a global perspective which reflects statistical information
without considering the spatial characteristics of pixels. As
mentioned earlier, the HVS employs multiple strategies for
quality estimation, and statistical information on behalf of
local entropy works when images have reasonable qualities
according to the HVS characteristics. When facing the poor-
quality images, the structural information that from detailed
aspect is more important in quality determination. To simulate
such mechanism of the HVS, we detect structural information
from the edge map as a supplement to statistical information.
The variations of structural information reflected by similarity
of edge maps in the most salient region is extracted. Based
on the saliency-based pooling, the changes of statistical and
structural information are pooled into two parameters. Finally,
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we map the proposed feature parameters to the subjective
image quality by building a quadratic polynomial model.

Major contributions of this paper are as follows. First, en-
tropy is employed in this paper considering the characteristics
of sonar imaging and transmission system. Since sonar images
are providing a visual representation of something that we
cannot perceive visually, and photographers are providing a
visual representation of what we can see, the target can be
modelled as stochastic source, and the entropy can measure
the information contained in an object and the relevant images.
Though entropy has been widely used in the existing IQA
methods, it was counted as a feature without considering
saliency and the interplay between adjacent pixels of images
in most cases. In this paper, local entropy map is employed
by considering the interplay between adjacent pixels. In
consideration of saliency, activity-based pooling is employed
for local entropy similarity map in this paper. Second, the
proposed SIQP method was designed in accordance with both
sonar image applications and HVS. On most occasions, sonar
images are used for object detection and recognition, so the
observer pays more attention to image information (entropy)
and structure, which are essential for sonar image applications.
Since multiple strategies are used by the HVS to infer image
quality, the SIQP method combines both statistical and struc-
tural information to incorporate the characteristics of sonar
images with the HVS properties. Third, the proposed SIQP
method employs common quadratic polynomial model without
severe under-fitting or over-fitting. The quadratic polynomial
model provides simple structure but superior performance. We
arrange the remainder of this paper below. Section II illustrates
the detail of our SIQP metric explicitly. In Section III, a
comparison of the SIQP metric with the existing state-of-the-
art quality models is performed using the sonar image quality
database (SIQD). We conclude this paper in Section IV.

II. METHODOLOGY

In this section, we first discuss the differences between CC-
NSIs and sonar images. Then the IQA strategies for sonar
images are introduced from the global and detailed aspects.
From the global aspect, the similarity of local entropy maps
between distorted image and its reference version is extracted
as statistical information, while, as for detailed aspect, the
similarity of edge maps between distorted image and its
reference version in salient region presents the structural
information. Finally, the statistical and structural information
are systematically integrated.

A. Differences Between CC-NSIs and Sonar Images

Nowadays, there are many research results concerning IQA
methods for CC-NSIs. Whether a reference image is available
or not, the existing IQA methods of CC-NSIs, especially the
newly proposed methods, show good performances. It has
been proved that the image structure [9], [29], the statistical
information [24], [25], [30], drift of saliency [31], and image
decomposition [32], etc., are highly relevant to the quality of
CC-NSIs. Since sonar images are different from CC-NSIs in
terms of both imaging mechanism and image characteristics,

Fig. 1. Block diagram of the proposed SIQP metric.

different IQA strategies are used for sonar images as compared
with CC-NSIs. In what follows, the differences between sonar
images and CC-NSIs will be discussed.

Actually, there are obvious differences between CC-NSIs
and sonar images. First, the CC-NSIs are generated by the
reflection of light while the sonar images are formed by con-
verting the echoes into digital images. Second, most CC-NSIs
are captured using a camera for human consumption while
sonar images are usually deployed in underwater searching,
rescuing, seabed mapping, and underwater biological detec-
tion, and so on. For human consumption relevant applications,
viewers pay more attention to the aesthetical elements instead
of the information contained in image. But for missions
like underwater search and rescue, seabed mapping, etc.,
viewers care more about how much relevant information will
be perceived from the images. Third, sonar images have a
homogeneous characteristic which can be seen from the small
variation of the pixel values, but the pixel values of CC-NSIs
have wider dynamic range. Fourth, since the sonar images are
taken and transmitted underwater, they have higher probability
to be severely distorted than CC-NSIs. Finally, the CC-NSIs
reflect what photographers see directly, while sonar images
are usually used in turbid water that no one knows what will
appear in the captured images.

The theoretical research and experimental results indicate
that statistical and structural information is strongly correlated
with sonar image quality. In the section below, from the theory
and implementation, we will introduce the proposed statistical
and structural information based SIQP metric, whose block
diagram is shown in Fig. 1.

B. Statistical Information Extraction

For sonar images, the target can be modelled as a stochastic
source, and the echoes reflected by objects can be modelled
as the outputs of this stochastic source because of uncertainty
according to the information theory [33]. The flow chart of the
sonar imaging and transmission system is demonstrated in Fig.
2. The more uncertainty a stochastic source contains, the more
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Fig. 2. Overview of the sonar imaging and transmission system.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Fig. 3. (f)–(j) are local entropy maps extracted from sonar images (a)–(e), and (k)–(o) are feature masks of sonar images (a)–(e). (a)
reference sonar image; (b) distorted sonar image whose mean opinion score (MOS) is 61.31; (c) distorted sonar image whose MOS is 30.4;
(d) distorted sonar image whose MOS is 57.15; (e) distorted sonar image whose MOS is 29.39. (f)–(j) and (k)–(o) shows the associated
local entropy maps and feature masks of sonar images (a)–(e), respectively.

information it emits. The entropy can be used to measure the
information of a stochastic source, that is, entropy can measure
the information contained in an object. If there is no distortion
introduced during transmission, the entropy of received image
equals to the information contained in an object; otherwise,
the distortion will either add some useless information or
reduce the useful information. In recent decades, entropy has
been showed as an effective statistical feature in the IQA
of CC-NSIs. In some existing works, image entropy is used
to be a weighting factor for pooling image blocks in IQA
[27]. But most of the entropy-related studies are devoted to
calculating spatial or spectral entropy as one of the quality
features [23], [24], [25], [26]. For example, Spatial-Spectral
Entropy-based Quality (SSEQ) index [34] is one of the famous
models based on spatial and spectral entropy histograms. In
abovementioned studies, entropy was counted as a feature

without considering the saliency and the interplay between
adjacent pixels of images. And all these methods are designed
without considering the characteristics of sonar images. For
evaluating the quality of sonar images, we firstly extract the
local entropy map which contains the statistical information
of sonar images with some optimizations compared with the
existing methods.

Research shows that the HVS identifies an object by feature
detection and combination [35]. ‘Crowding’ occurs when
objects are too close together and several features of the
objects are composed into a jumbled percept. Most of the time,
the majority of the human visual field is crowded, sparing only
a central ‘uncrowded window’. At specific viewing distances,
only the object in a local area within an ‘uncrowded window’
can be distinguished clearly, and outside of this window,
objects are too crowded to be distinguished. To catch the
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objects that now lie outside of the window, we must move
our eyes to put our window on those objects [28]. So we
employ the local entropy in the proposed SIQP metric. The
local entropy of the central position (x, y) is defined in an
image block whose size is (2m + 1) × (2m + 1). Parameter
m can be an arbitrary number for window size. We believe
that its value is relevant to the content and resolution of image.
Considering the relatively low resolutions of sonar images and
the balance between requirements and cost, m is selected as 4,
which has been proved to provide the best performance when
compared with other values. For a sonar image I , the local
entropy of the central position (x, y) in a (2m+1)×(2m+1)
image block is defined as:

HI(x, y) = −
255∑
i=0

PilogPi (1)

where Pi denotes the gray-level distribution in the image
block. Eq. (1) is used in each (2m+1)×(2m+1) neighborhood
around the corresponding pixel, and the output entropy value
will be assigned to central position. In this way, we can obtain
a local entropy map by moving this (2m + 1) × (2m + 1)
window pixel-by-pixel over the entire image. Since the HVS
is highly tuned for the recognition of image edges [36], we
mark the key locations based on a feature mask which is
implemented by an edge detector followed a dilation operation.
The feature mask is given by:

Mr = hs ◦ Edge(Ir) = hs ◦ er
Md = hs ◦ Edge(Id) = hs ◦ ed

(2)

where er and ed denote the results of edge detection performed
on reference sonar image Ir and distorted sonar image Id
respectively, hs is a structural element, and ◦ denotes the
AND-operation between hs and the binary edge map. Then
we derive the masked entropy maps of Ir and Id:

ĤIr (x, y) = HIr (x, y) ·Mr(x, y)

ĤId(x, y) = HId(x, y) ·Md(x, y).
(3)

One representative sonar image and its four corrupted images
from the SIQD database as well as their corresponding local
entropy maps and feature masks are shown in Fig. 3. For
the reference sonar image, the local entropy map seems to
be in a state of order that has clear edges. By comparison,
the local entropy maps of distorted sonar images are in a state
of disorder and the pixels are more disorganized. When the
distortion is added to the image, the image tends to go from
a state of order to a state of disorder [19]. The variation of
entropy introduced by distortion will disturb the extraction of
useful information. The lower the quality of a sonar image, the
more disordered the local entropy map of this sonar image is.
As shown in Fig. 3(k) to Fig. 3(o), the feature masks highlight
the location of important objects (corals and fish) which are
salient for viewers. Finally, the global information similarity
is defined as:

ŝ(x, y) =
2ĤIr (x, y) · ĤId(x, y) + c1

Ĥ2
Ir
(x, y) + Ĥ2

Id
(x, y) + c1

(4)

where c1 is assigned as a small constant to avoid instability
when Ĥ2

Ir
(x, y)+ Ĥ2

Id
(x, y) is very close to zero. Since small

variation of information is easy to be neglected in an informa-
tion clustered area, c1 is modified considering visual masking.
Considering the physical significance of entropy map, each
pixel represents the amount of information contained in the
neighborhood of its location. In an information clustered area,
small variation of information is easy to be neglected. Small
variation of information will not influence the extraction of
most of the information in an image block with high entropy,
since the amount of variation only devotes a small percentage
of total information contained in this block. For an image
block with low entropy, small variation of information will
really affect the extraction of the most of the information in
this block and easy to be perceived, since it will make up a
large percentage of total information. The c1 is defined as:

c1 = K ∗min(HIr , HId) (5)

where K should be in a reasonable range; otherwise, the
image distortion may be overestimated in some cases due to
the visual masking. According to theoretical deduction and
experimental results, the reasonable range for K is between 40
and 90, within which the differences of performance caused by
varying K values are quite small. Readers can refer to [11] for
theoretical analysis, and Section III-C for experimental results.

C. Structural Information Extraction

In II-B, we proposed to use the image entropy measures
the statistical information from the global aspect. When con-
sidering the HVS characteristics, the structural information
plays a crucial function in quantifying the quality of images.
The effectiveness of edge/gradient based IQA methods along
with their capability of representing image structure has been
reported in [11], [37], [38]. Besides, according to the HVS
characteristics, when viewing a high-quality sonar image,
the HVS attempts to extract the global information. As for
low-quality images, the structural information draws more
attention. An example is shown in Fig. 4. Fig. 4(a) indicates
a pristine sonar image of plane wreckage, Fig. 4(b) is a
high-quality sonar image (MOS=69.32), and Fig. 4(c) is a
low-quality image (MOS=34.88). Obviously, Fig. 4(b) retains
most information in Fig. 4(a). In situations in which the
image quality is so poor as shown in Fig. 4(c), most details
are destroyed and only the plane contour can be identified.
The contour of the main object in the image is one of the
representations of structural information and can be extracted
using edge map. To approximate the HVS characteristics for
low-quality sonar images, we combine an edge-based method
with the aforementioned local-entropy-based method.

The first step of the proposed edge-based method is to
extract the salient region. In most cases, the important infor-
mation is located at active areas that are more salient than
inactive areas. We detect the active areas of a sonar image by
image activity measurement (IAM) [40]. The activity (IAM0)
of a m× n image block I is defined as:

IAM0 =
1

m× n
[A+B] (6)
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(a) (b) (c)

Fig. 4. Comparison of sonar images with distinct quality levels. (a) reference image; (b) high-quality sonar image, MOS=69.32; (c) low-quality
sonar image, MOS=34.88.

Fig. 5. Illustration of the most active areas of different sonar images.

where A and B are defined as:

A =

m−1∑
i=1

n∑
j=1

|I(i, j)− I(i+ 1, j)|

B =
m∑
i=1

n−1∑
j=1

|I(i, j)− I(i, j + 1)|.
(7)

We cut the sonar images into k1×k1 blocks, then the IAM0 of
each reference block {IAM(bl1), IAM(bl2) · · · , IAM(bln)}
is calculated according to Eq. (6), where bli denotes the image
block; i = 1, 2, ..., n with n being the number of image
blocks for one sonar image; IAM(·) is the activity operator
to calculate the IAM0. Fig. 5 presents examples of the most
active areas of different sonar images. Considering the content
and the resolution of selected sonar images, k1 is defined as
64, which has been proved to provide the best performance
when compared with other values.

As shown in Fig. 5, the most active area in a sonar image
contains the important information like the swimmer, the
broken part of plane wreckage, and the ship wreckage as
highlighted in Fig. 5. The most active image block blm is
selected, where m = argmax

i
IAM(bli). The Canny edge

detector is employed to extract the edge map for the most
active image block. The edge maps of a pristine sonar image
and its contaminated version are denoted as Er = emr and
Ed = emd , respectively. The structural information similarity
is obtained as:

ê(x, y) =
Er(x, y)&Ed(x, y) + c2
Er(x, y) ‖ Ed(x, y) + c2

(8)

Fig. 6. Illustration of activity maps for different sonar images.

where c2 is again a small constant to avoid instability when
Ed(x, y) ‖ Er(x, y) is equal to zero. Since both Er and Ed

are logical map, ‘&’ indicates logical AND, and ‘‖’ represents
logical OR. The differences of performance caused by varying
c2 values will be discussed in Section III-C.

D. Feature Integration

In this section, the saliency-based pooling is first introduced
to get two feature parameters, then the quadratic polynomial
model is established to integrate the extracted features.

Since the HVS is easier to be attracted by salient features,
more importance should be assigned to the associated salient
regions. In this paper, the saliency of a sonar image is reflected
using image activity theory mentioned above. According to
[28], the central vision likes an ‘uncrowded window’. When
glancing over an image, viewers can recognize the objects
inside of this window (in the central vision) while the objects
outside of this window cannot be recognized. It can be
logically infer that saliency levels of the pixels in the same
‘uncrowded window’ are very close to each other. So the
activity operator works over each image block whose size is
k2 × k2 and the IAM0 value of this block is assigned to
each pixel in this block as its activity. Then the activity map
IAMmap of an image is obtained. Besides, we have tested
the performance of abovementioned block-based activity map
and sliding-window-based activity map (the activity operator
moves pixel-by-pixel over the entire image). The performances
are very close to each other while the sliding-window-based
activity map takes much more running time than block-based
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activity map. In this paper, k2 is selected as 4. The normalized
activity map IAMmap is achieved as a weighting function for
feature pooling as:

IAMmap(x, y) =
IAMmap(x, y)∑

x

∑
y
IAMmap(x, y)

. (9)

We display the activity maps of Fig. 5 in Fig. 6, where
the brighter pixels indicate higher activities. The statistical
information feature s and the structural information feature
e are calculated using the normalized activity map as Eq. (10)
and Eq. (11):

s =
∑
x

∑
y

ŝ(x, y)IAMmap(x, y) (10)

e =
∑
x

∑
y

ê(x, y)IAM ′map(x, y) (11)

where IAMmap(x, y) and IAM ′map(x, y) are the normalized
activity maps of corresponding sonar image and the most
active block of this sonar image, respectively.

Finally, as compared with different parameter models, the
quadratic polynomial model which achieves the best perfor-
mance as shown in Eq. (12) below is used to integrate the
extracted features and generate the SIQP metric:

SIQP =
2∑

i=1

(r1is
i + r2ie

i) + r3se (12)

where the r1i, r2i (i = 1, 2) and r3 are the parameters of
quadratic polynomial model. The details about the parameter
selection and the parameter sensitivity in Eq. (12) will be
discussed in Section III-C.

III. EXPERIMENTS AND ANALYSES

A. Sonar Image Quality Database

All the performance comparisons are conducted in the SIQD
database [39] which contains 40 reference sonar images within
which some typical scenes, such as swimmer, shipwrecks,
underwater creatures and seabed, were involved. These sonar
images are all captured by acoustic lens sonar or side-scan
sonar. In real applications, the resolution of sonar images
depends on the precise model and the relevant display monitor.
Since the underwater communication rate is not as good
as the wireless environment, sonar images with a resolution
of 320 × 320 are selected. The reference sonar images are
presented in Fig. 7. As mentioned in Section I, in order to
collect and process underwater information with higher effi-
ciency, we hope to achieve real-time transmission of acquired
sonar images. Because of the poor condition of underwater
acoustic channel, such as limited bandwidth and multipath
effect, sonar images are often required to be compressed before
transmission, and easily to be distorted via transmission. In this
paper, we mainly discussed about the quality of transmitted
sonar images. Therefore the distorted images in the SIQD
database are afflicted with compression and packet loss.

The compressed sonar images in the SIQD database are
obtained using Compression based on Gradient-Based Re-
covery (ComGBR) [41] and Set Partitioning in Hierarchical

Trees (SPIHT) coding [42] which provide good robustness and
high compressibility respectively. We use SPIHT and ComG-
BR in the SIQD database for the following reasons. First,
underwater acoustic channel is a fast time-varying channel.
On account of a bad channel condition, the need of a kind
of compression method with high robustness is greater than
wireless channel. Second, under this background, ComGBR
was proposed based on the compressed sensing (CS) theory.
Since each random CS measurement is with nearly equal
importance [43], each bit in compressed stream shares the
same importance. So the robustness of CS-based compression
method is better than conventional progressive compression
like SPIHT and JPEG. Due to its high robustness, ComGBR
is especially suitable for underwater acoustic transmission. For
more details, readers can refer to [41]. Third, when the channel
condition is good, progressive compression can be used. JPEG
is a codec standard, which was created considering more about
general applicability. Since the proportion of important bits
of JPEG is higher than SPIHT, SPIHT is more suitable for
underwater acoustic transmission. Besides, SPIHT has been
used in underwater acoustic multimedia transmission [44]-
[45]. The compression ratio for ComGBR compression, which
is defined as the ratio of amount of data after compression and
before compression, is selected as 0.1, 0.2, 0.3, 0.4, 0.5, and a
value depends on the content of image; for SPIHT, parameter
rate (shows how many bits will be used to represent one
pixel after encoding) and level (wavelet decomposition level)
can be adjusted to obtain compressed images with different
compression ratio. In this paper, parameter level is set as 6,
and the rate is set as 0.01, 0.03, 0.1, 0.3, and 3 considering
the perceived quality and compression ratio.

The distorted images due to packet loss are collected by
making man-made bit error in the bit stream after SPIHT
coding and ComGBR coding, respectively. Five levels of bit
error ratio (BER) is used to simulate different conditions of
underwater acoustic channel. The BERs are as 10−1 ∼ 10−5 in
accordance to the recent achievements in underwater acoustic
communication [46], [47], [48]. We have set a stochastic
variable c whose value is either 1 with probability equals to
BER or 0 with probability 1-BER. Each package contains 8
bits in this paper. When c equals to 0, current packet will
be transmitted correctly, otherwise, it will be lost. Overall, 40
reference images and 800 distorted images were collected as
the SIQD database in this study.

All the images are divided into 20 groups, and each group
is tested by 25 viewers. All of them are experienced in under-
water acoustic communication related works. In conformity to
the suggestion of ITU-R BT.500-13 [49], the subjective test
utilizes the single stimulus with multiple repetition (SSMR)
method with a 5-category discrete scale for scoring. The
opinion score for each test sonar image is provided by sub-
jective viewers considering whether it will perform well in
practical applications. Then, the subjective agreements among
subjective viewers should be examined. The Euclidean dis-
tance (EUD) values and normalized cross correlation (NCC)
values between every two subjective rating vectors for each
image group are calculated. The average EUD values for
20 image groups are between 0.12 to 0.18 while the average
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Fig. 7. Reference sonar images.

NCC values for 20 image groups are between 0.93 to 0.95.
The values of EUD and NCC respectively close to 0 and
1 confirm that the viewers have lead to an agreement on the
quality scores of the test sonar images. The outlier coefficient
(OC) with OC=2.5% indicates that 97.5% of the sonar images
in the SIQD database had agreement among viewers. Finally,
the MOS is calculated for each sonar image [49], Fig. 8
presents the histogram of MOSs for test images.

B. Testing Metric and Evaluation Protocols

The proposed SIQP metric will be compared with eleven
IQA metrics. The selected metrics fall into two categories. The
first category is composed of three classical quality metrics:
(1) Structural Similarity Index (SSIM) [9] which estimates
the image quality by comparing the luminance, contrast and
structural information of lossless and lossy images; 2) Visual
signal-to-noise ratio (VSNR) [50] that measures the visual
fidelity on basis of nearthreshold and suprathreshold proper-
ties of human vision; 3) Peak signal-to-noise ratio (PSNR),
assuming that distortion is only caused by additive signal-
independent noise. The second category includes eight state-
of-the-art metrics which have achieved good performances
for CC-NSIs. These works are included in this category: 1)
Feature similarity index (FSIM) [10], considering that gradient
magnitude and phase congruency complement each other in

Fig. 8. Histogram of MOSs for test images.

quantifying the local quality of images; (2) Most apparen-
t distortion (MAD) [21], using different quality estimation
schemes for images of high- and low-quality; (3) Visual
saliency-induced index (VSI) [51]; (4) Gradient magnitude
similarity deviation (GMSD) [37]; (5) Perceptual similarity
model (PSIM) [38]; (6) Gradient similarity (GSM) [11] based
on the low-level features like gradient; (7) Analysis of dis-
tortion distribution structural similarity index (ADD-SSIM)
[15] that based on a new pooling model by analysing the
distortion distribution affected by image content and distortion;
(8) Local-tuned-global model (LTG) [52] which under the sup-
position that the HVS perceives the image quality according
to global quality degradation and salient local distortion. To
make comparison fairly, important parameters in these selected
IQA metrics have been optimized using sonar images.

In order to remove the nonlinearity caused by the subjective
rating process [53], a logistic mapping based on five param-
eters is employed between the subjective scores (MOSs) and
the objective scores x:

f(x) = β1(
1

2
− 1

1 + exp(β2(x− β3))
) + β4x+ β5. (13)

The performances of the selected IQA metrics and the pro-
posed SIQP metric are measured using five representative cor-
relation performance criteria: 1) Kendall rank order correlation
coefficient (KROCC) and Spearman rank order correlation co-
efficient (SROCC), which are not influenced by any monotonic
linear or nonlinear mappings applied on the objective quality
scores; 2) mean absolute error (MAE), root mean square
error (RMSE) and Pearson linear correlation coefficient (CC),
between the objective predictions converted with a non-linear
mapping and the subjective quality ratings. Among the above
five evaluation criteria, KROCC and SROCC measure the
prediction monotonicity, while, MAE, RMSE and CC evaluate
the prediction accuracy. A better IQA algorithm should have
greater KROCC, SROCC and CC values and smaller RMSE
and MAE values [54], [55].

C. Parameter Selection and Parameter Sensitivity

A good IQA method must be insensitive to different visual
contents; conversely, a poor IQA method is only valid on a
few specific images, that is, it is very dependent on a training
set. So, in this section, the sensitivities of the parameters of
quadratic polynomial model are tested. Since the varying K



1051-8215 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2019.2890878, IEEE
Transactions on Circuits and Systems for Video Technology

9

Fig. 9. Parameter distributions over 100 iterations (the horizontal axes correspond to the weighting parameters, and the vertical axes
correspond to the ratios of 100 fitting results to the selected values).

Fig. 10. Performance criterion distributions over 100 iterations (the horizontal axis corresponds to the weighting parameters, and the vertical
axis corresponds to the five performance criteria).

and c2 values will influence the performance of the proposed
SIQP metric, the choices of K and c2 will also be discussed
in this section.

To integrate the statistical and the structural information
features, a quadratic polynomial model which is capable of
combining two features into one numerical value is built. In the
proposed SIQP metric, the important parameters of quadratic
polynomial model are determined as r11 = −2.28 × 104,
r21 = 2.07 × 104, r12 = 0.35 × 104, r3 = −1.88 × 104,
and r22 = 1.68× 104. These parameters are determined after
100 experiments with different content grouping. There are
totally 40 kinds of different contents in the proposed SIQD
database. The SIQD database is subdivided into different sets
for training and testing (completely non-overlapping), in which
four fifth of the SIQD database contents are deployed for
training, and the rest one fifth are used for testing. After
getting 100 randomly chosen sets for training and testing,
the parameter fitting process is run over the 100 iterations on
100 training groups, and 100 groups of model parameters are
obtained. These 100 groups of parameters and their box plots
are shown in Fig. 9. The five-pointed star, asterisks, horizontal
line in the box indicate the mean value, the maximum and
minimum value, and median value, respectively. The bottom
and top of the box represent the upper and lower quartile of
these 100 fitting results, respectively. As illustrated in Fig. 9,
the five model parameters gather on a small scale, specifically,
the biggest difference of parameters trained with different
iterations are not bigger than 0.15% of the average value
of each parameter (the selected value). Since the differences
between parameters trained with different iterations are not so
big when compared to the values of parameters, the model
parameters are decided by averaging the fitting results of 100

iterations. In this paper, we hold the opinion that both the
differences of parameters trained in different iterations and
the differences of performances in difference iterations will
be small if the model is not sensitive to difference content. To
make the experimental results more convincing, we test the
performances of 100 groups of fitted parameters on 100 testing
groups, the distribution of five performance criteria are shown
on Fig. 10. It is obvious that the performances of parameters
trained in 100 iterations are similar to each other and in a
relatively high standard. Thus Fig. 9 and Fig. 10 show the
insensitivity of the model parameters.

To verify the contribution of the combination of edge-
based method with local-entropy-based method, we tested the
performance of statistical information feature and structural
information feature, respectively. Then the performance of the
quadratic polynomial model that integrates aforementioned
two features is tested. We list the performance comparison
results in Table I, and indicate in bold the best-performance
of the corresponding feature. As can be observed, the combi-
nation enhances the performance of the selected features. The
performance gain is about 1% for SROCC and CC, 2% for
RMSE, KROCC and MAE when comparing with statistical
information feature. And the performance improvements over
structural information feature are about 5% for SROCC, 3%
for CC, 6% for RMSE, 3% for KROCC and 8% for MAE. As
illustrated in Table I, the performance of the model combining
the statistical and the structural information features is superior
to separate performances. And the multiple strategies of the
HVS to determine image quality does work for sonar images.

To confirm the choices of K and c2 are reasonable, the
performance of our proposed SIQP method is compared under
different K and c2 values. In order to remove the impact
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(a) (b)

Fig. 12. Plot of (a) SROCC, CC and KROCC, (b) RMSE and MAE as a function of K.

(a) (b)

Fig. 13. Plot of (a) SROCC, CC and KROCC, (b) RMSE and MAE as a function of c2.

TABLE I
PERFORMANCE COMPARISON OF STATISTICAL INFORMATION

FEATURE, STRUCTURAL INFORMATION FEATURE AND
COMBINATION OF THESE TWO FEATURES

Features SROCC CC RMSE KROCC MAE

Statistical information feature 0.791 0.803 8.334 0.602 6.321
Structural information feature 0.762 0.785 8.668 0.569 6.728

Combination 0.802 0.812 8.154 0.613 6.179

of another parameter, the other parameter is fixed while
the testing parameter is enumerated twenty numbers in an
appropriate interval around assigned value. We derive values
of K and c2 by analysing the characteristics of sonar images
which are not included in the SIQD database. Fig. 11 shows
the examples of these images. The contents of these sonar
images are different from images in the SIQD database. But
they have the same characteristics, and were captured in
similar underwater environments by the same types of sonars
(acoustic lens sonar and side-scan sonar) as images in the
SIQD database.

Fig. 11. Examples of sonar images for derivation of K and c2 values.

Considering the masking effect, K is constrained into the
range between 40 and 90. To confirm that the selected value
for K is reasonable, the plots of selected performance criteria
as a function of K are displayed in Fig. 12. Furthermore, the
performance nearly remains the same when K is larger than
40 and smaller than 90, and the performance reduces with the
decrease in K when it is smaller than 40 and with the increase
in K when it is larger than 90, which are valid for different
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criteria. The decrease of performance is on account of fact
that the small/large value of K (i.e., K < 40 or K > 90) will
introduce the overestimation of image distortion in some cases.
The choice of K = 50 makes the performance approaches or
even reaches the highest possible level.

To determine the value of c2, we simulate various values
of c2 on the proposed SIQD database. The selected five
performance criteria between objective qualities and MOSs
are shown in Fig. 13 to illustrate the decision of c2. For easy
comparison, only the first eleven data points are shown in Fig.
13. As can be observed in Fig. 13, when the value of c2 is close
to zero, the performance drops fast. The performance criteria
are nearly constant when the value of c2 is larger than 14, and
the difference of criteria for different c2 is smaller than 0.1.
We can derive the conclusions: 1) when c2 is close to zero,
the weights of statistical information feature and structural
information feature are out of balance which leads to the
decrease of performance; 2) when c2 is too large, the structural
information feature tends to be a constant which results in the
uselessness of it. So, according to Fig. 13, a proper value of
c2 is chosen to provide with the best performance.

The edge detector in Eq. (2) and Eq. (8) is Canny edge
detector. For Eq. (2), the low threshold and high threshold
are set to 0.08 and 0.13, respectively. The deviation of the
Gaussian filter is set to 3.6. For Eq. (8), the deviation of the
Gaussian filter is set to

√
2, while the low and high thresholds

are chosen automatically according to the highest value of the
gradient magnitude of the image. All these configurations have
been optimized in the SIQD database.

D. Performance Test and Statistical Significance

The performance comparison of twelve IQA metrics are
tabulated in Table II. The two best-performing algorithms are
highlighted in bold font. To test the performances of IQA
metrics for different distortions belong to the SIQD database,
we designed the test image classes by binning the images
such that images distorted by ComGBR compression coding
and SPIHT compression coding as ‘Class 1’ and ‘Class 2’,
respectively, those distorted by bit error in the ComGBR and
SPIHT bit streams as ‘Class 3’ and ‘Class 4’, respectively.
Sonar images in ‘Class 1’ are mainly afflicted with a kind
of blur caused by ComGBR, which is a compression coding
scheme based on CS, while sonar images in ‘Class 2’ contain
non-eccentricity distortion and another blur-like distortion
caused by SPIHT. Noise is the main distortion contained in
sonar images of ‘Class 3’. There is structural degradation in
sonar images from ‘Class 4’.

As listed in Table II, the proposed SIQP metric shows the
best performance in all distortion types. For sonar images
which belong to ‘Class 1’, both the classical and the state-
of-the-art IQA metrics exhibit poor performances. Among
these, VSI achieves comparable performances which are better
than the other selected IQA metrics. The performances of
these IQA metrics for images belonging to ‘Class 1’ show
that all selected IQA metrics are not very good at evalu-
ating the degree of blur. When considering the ‘Class 2’
and ‘Class 3’, the PSIM shows the second best performance

which is worse than the SIQP but better than the other
selected IQA metrics. Almost all the selected IQA metrics
(including classical methods and state-of-the-art methods) fail
on the images from ‘Class 2’, which indicates that the non-
eccentricity distortion may confuse the prediction of subjective
quality. Nearly all the selected IQA metrics are good noise
predictors for sonar images because of the good performances
for ‘Class 3’ as shown in Table II. For sonar images which
belong to ‘Class 4’, the majority of the selected modern IQA
models show reasonable performances and the SIQP metric
performs even better, and this indicates its ability to evaluate
structural degradation. In general, the proposed SIQP metric
has better performance for sonar images with different kinds
of distortion, while, the state-of-the-art IQA metrics deliver
poor performance.

To conduct an overall comparison on the entire SIQD
database, we report the performances of all the selected IQA
metrics and the proposed SIQP metric as tabulated in the
last 5 rows of Table II. It can be seen that our SIQP metric
delivers better performance than other metrics, i.e., the SIQP
metric has acquired the highest SROCC, CC and KROCC,
and lowest RMSE and MAE. Only the SIQP metric achieves
performances greater than 0.8 for SROCC and CC and greater
than 0.6 for KROCC, but lower than 9 for RMSE and lower
than 7 for MAE. Relative to the second-ranking IQA metrics,
the performance gain of the proposed SIQP metric is around
5% in terms of SROCC, 5% in terms of CC and over 8%, 7%,
and 9% in terms of RMSE, KROCC and MAE respectively,
which indicate the promotion both in performance accuracy
and monotonicity. Compared to the classical IQA metrics,
the proposed SIQP metric yields a higher than 14% gain for
SROCC, 13% gain for CC, 16% gain for RMSE 20% gain
for KROCC and 18% gain for MAE. By comparison with
those selected state-of-the-art quality metrics which show good
performances in CC-NSIs, our SIQP metric also presents no-
ticeably better performance no matter in performance accuracy
or monotonicity. And as can be seen from Table II, the state-of-
the-art IQA metrics show worse performances than our SIQP
metric but perform better than classical IQA metrics of sonar
images.

The statistical significance shows the performance statically
by comparing the prediction residual. In Tabel III, the residuals
of the SIQP metric and each of selected IQA metrics are cal-
culated using F-test with the assumption that the significance
level is set as 0.05. A value of H = +1 indicates that the
SIQP metric performs statistically better than the test metric,
a value of H = 0 shows that two metrics have statistically
equivalent performance, while a value H = −1 presents that
the SIQP is statistically worse than the test metric. As listed
in Table III, the results are all ‘+1’, and this indicates that our
SIQP metric performs statistically better than all the selected
IQA metrics in the SIQD database.

Finally, we will analyze and compare the complexity of
proposed SIQD and selected FR IQA methods. Suppose that
an image has N pixel. The most classical PSNR, which
requires 2N additions and N multiplications, has the lowest
complexity. The proposed SIQP metric, which includes the
calculation of local entropy map, global information map,
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TABLE II
PERFORMANCE COMPARISON AMONG TWELVE IQA MODELS ON THE SIQD DATABASE

Distortion Criteria SSIM PSNR VSNR FSIM VSI GMSD ADD-SSIM MAD GSM PSIM LTG SIQP

Class 1

SROCC 0.471 0.470 0.197 0.577 0.697 0.656 0.679 0.627 0.459 0.634 0.597 0.741
CC 0.494 0.467 0.259 0.590 0.734 0.680 0.731 0.720 0.501 0.656 0.627 0.776

RMSE 11.208 11.404 12.452 10.411 8.760 9.458 8.796 8.975 11.159 9.732 10.048 8.140
KROCC 0.318 0.322 0.142 0.392 0.510 0.462 0.485 0.446 0.308 0.446 0.410 0.555

MAE 8.812 9.018 9.865 8.362 6.791 7.434 6.830 7.050 8.796 7.620 8.032 6.241

Class 2

SROCC 0.561 0.473 0.318 0.585 0.574 0.617 0.586 0.524 0.496 0.664 0.568 0.769
CC 0.603 0.500 0.370 0.645 0.602 0.634 0.598 0.536 0.569 0.698 0.614 0.783

RMSE 9.062 9.833 10.553 8.681 9.070 8.783 9.100 9.627 9.337 8.133 8.966 7.069
KROCC 0.385 0.328 0.210 0.394 0.401 0.425 0.406 0.358 0.331 0.465 0.383 0.565

MAE 7.271 8.046 8.389 7.048 7.257 7.101 7.242 7.616 7.510 6.630 7.192 5.582

Class 3

SROCC 0.773 0.802 0.797 0.808 0.814 0.753 0.833 0.766 0.787 0.828 0.804 0.848
CC 0.826 0.826 0.807 0.827 0.832 0.795 0.837 0.786 0.826 0.824 0.800 0.849

RMSE 8.810 8.806 9.227 8.782 8.665 9.494 8.563 9.668 8.822 8.862 9.374 8.267
KROCC 0.590 0.629 0.613 0.640 0.641 0.547 0.665 0.583 0.610 0.651 0.626 0.677

MAE 6.147 6.050 6.973 6.000 5.896 7.081 5.866 7.021 6.125 6.344 6.839 5.757

Class 4

SROCC 0.675 0.627 0.690 0.757 0.775 0.760 0.735 0.782 0.665 0.771 0.722 0.807
CC 0.698 0.627 0.706 0.785 0.784 0.783 0.754 0.789 0.697 0.788 0.755 0.825

RMSE 9.907 10.760 9.789 8.567 8.581 8.593 9.083 8.487 9.915 8.513 9.065 7.811
KROCC 0.472 0.436 0.483 0.548 0.568 0.548 0.522 0.581 0.465 0.562 0.505 0.601

MAE 8.072 8.656 7.822 6.970 6.738 6.855 7.151 6.499 8.078 6.672 7.426 6.222

Overall

SROCC 0.654 0.622 0.451 0.706 0.760 0.725 0.723 0.717 0.642 0.728 0.707 0.802
CC 0.673 0.639 0.493 0.721 0.769 0.730 0.742 0.737 0.658 0.739 0.718 0.812

RMSE 10.345 10.760 12.166 9.687 8.944 9.551 9.376 9.450 10.533 9.423 9.740 8.154
KROCC 0.469 0.443 0.312 0.510 0.569 0.522 0.524 0.527 0.455 0.529 0.506 0.613

MAE 8.066 8.540 9.921 7.589 6.850 7.636 7.397 7.346 8.289 7.478 7.748 6.179

TABLE III
COMPARISON OF THE STATISTICAL SIGNIFICANCES OF THE SIQP

METRIC AND 10 IQA METRICS ON THE SIQD DATABASE

IQA SSIM GSM VSNR FSIM VSI
Index +1 +1 +1 +1 +1

IQA GMSD ADD-SSIM MAD PSIM LTG
Index +1 +1 +1 +1 +1

TABLE IV
TIME COMPLEXITY COMPARISON (SECONDS/IMAGE) OF THE

SIQP METRIC AND NINE NR IQA METRICS ON THE SIQD
DATABASE

Metrics SSIM PSNR VSNR FSIM VSI GMSD
Cost (s) 0.023 0.008 0.017 0.236 0.097 0.014

Metrics ADD-SSIM MAD GSM PSIM LTG SIQP
Cost (s) 0.043 0.320 0.021 0.033 0.019 0.381

structural information map, and activity map, requires 268N
additions and 260N multiplications. Additionally, we also tab-
ulate the average time consumption of one sonar image on the
SIQD database of SIQP metric and other compared methods in
Table IV, and comes to the conclusions as follows. First, since

the SIQP metric includes calculating a local entropy map, its
time complexity is higher when compared to the other selected
IQA methods. It is kind of a weakness of SIQP metric and will
be improved in the further work. Second, the imaging time for
sonar images is longer than CC-NSIs and the transmission rate
for underwater acoustic channel is much slower than terrestrial
channel, so the time consumption in quality assessment is not
significant when compared to imaging time and transmitted
time. Third, most of the applications of FR sonar IQA methods
such as compression monitoring have no strict requirement
for real-time, so we care more about performance rather than
complexity in this case.

E. Visualized Comparison

For visual comparison, the scatter plots between MOS and
quality predictions yielded by the selected eleven metrics
and the SIQP metric are presented in Fig. 14. The distinct
symbols are used to label the sample points related to different
distortion classes as mentioned in Section III-D: red circle
for ‘Class 1’, green square for ‘Class 2’, deep-blue diamonds
for ‘Class 3’, blue triangle for ‘Class 4’, and purple inverted
triangle for reference images without any distortion. Two kinds
of information can be concluded from Fig. 14. First, the dis-
tribution of sample points corresponds to the convergence and
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 14. The scatter plots of MOSs versus qualities assessed by different image quality assessment methods on the SIQD database. Each
sample point stands for a test image. (a) SSIM; (b) VSNR; (c) FSIM; (d) PSNR; (e) VSI; (f) GMSD; (g) ADD-SSIM; (h) MAD; (i) GSM;
(j) PSIM; (k) LTG; (l) SIQP.

monotonicity of the quality assessment method intuitively, be-
cause there must be high correlation between quality predicted
by a good image quality assessment method and MOS for an
image. It is apparent that the proposed SIQP metric provides
the best dependency between MOSs and predicted qualities
when compared with the scatter plots of the other IQA metrics.
Second, the distribution of symbols represents the robustness
of relevant quality assessment methods to different distortion
types. For a quality metric, when points represent the same
type of distortion uniformly distributed along horizontal axis,
this quality metric should be robust across different distortions.
As can be seen from Fig. 14, the proposed SIQP metric is
robust across the four types of distortions contained in the
SIQD database.

IV. CONCLUSION
Sonar images are important carriers of underwater informa-

tion which calls for more research attention. They are different
from CC-NSIs in the aspects of imaging mechanism, image
characteristics and utilities. In this work, we have first built the
SIQD database that consists of 840 sonar images. Since the
MOSs contained in the SIQD database are obtained according
to the application of sonar images, the proposed SIQP metric
is tasked-based. Considering the utility of sonar images and
the HVS characteristics, we have proposed a local entropy
and edge based IQA metric (SIQP). The local entropy is
extracted for the representation of statistical feature that is

more important when a sonar image has high-quality, and
the edge is employed to capture the structural feature that is
more important when a sonar image has low-quality. Then a
quadratic polynomial model is used to integrate two features.
Results of experiments present that, in comparison to the
relevant classical and state-of-the-art IQA models, the SIQP
metric shows better performance. And the proposed metric is
also robust across different distortion types. The source code of
the new model and database will be released to the public. In
the future work, the weighting strategy between two features
will be considered for obtaining better performance, and the
improved integration model will be investigated, too.
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